
 Time 2 hours Difåculty Advanced

 (/)

Neuroscience for Everyone!

 Experiment: Controlling the Claw
Make your ãrst anthropomorphic Neuroprosthetic, in which you control a robotic claw with the signal of your muscles.

What will you learn?
In the following experiment you will learn to control the Claw with the EMG signal of your muscles. The Claw will open and close depending on the strength of the signal you make

when contracting the muscles of your hand; you can perform this experiment to impress your friends, for a school science fair, or just to dive into the study of Neuroprosthetics!

 Prerequisite Labs

Getting to know the Muscle SpikerShield (https://backyardbrains.com/experiments/muscleSpikerShield)

 Equipment

Claw Bundle (https://backyardbrains.com/products/clawBundle)

Background
Based on a prototype written by José Enrique López Pérez, student of Electronic Engineering in Oaxaca, Mexico.

Servomotor

To make robots people often use servomotors. They are popularly called "servos" and are useful for their small size, low power consumption, and high accuracy. They can be found in

the steering control of a toy car or at the helm of a ship or aircraft, for example... A servo motor is made up of a small DC motor, a gear transmission which reduces speed and

increases strength, and a small circuit control that makes it possible to move the motor accurately.

What is the difference between a stepper motor and a servo motor?

Inside a stepper motor (https://backyardbrains.com/experiments/MuscleSpikerShield_StepperMotor) there are coils and it's necessary to apply a series of pulses to them for the

motor to rotate a certain number of steps; This is why it has so many wires coming out of it (usually 5 to 6 wires). However, inside the servo motor there is one DC motor and a

https://backyardbrains.com/
mailto:hello@backyardbrains.com
https://backyardbrains.com/experiments/muscleSpikerShield
https://backyardbrains.com/products/clawBundle
https://backyardbrains.com/experiments/img/ServoMotor_web.jpg
https://backyardbrains.com/experiments/MuscleSpikerShield_StepperMotor

circuit control which enables precise positioning of this motor using only three wires, one for control and the other two for power and ground.

Some signiãcant differences between a servomotor and a stepper motor are: speed, strength, and accuracy; the servomotor can move with a velocity greater than a stepper motor,

and with more strength and accuracy. A stepper motor is normally not used in high speed applications because at these speeds it loses strength. However, at low speeds the Stepper

motor is more accurate and stronger than the servo, that's why it's widely used in industrial robot arms.

The PWM (Pulse Width Modulation) is the most commonly used system for servo control. This system generates a square wave which changes the amount of time the pulse is high,

keeping the same period; a high level duration of the signal indicates the position where we want to put the motor shaft. An integrated potentiometer in the control circuitry

monitors the current angle of the servo: if the axis is at a right angle, then the motor is off. The circuit checks that if the angle is not correct, the servo will correct the direction until

the angle is right. Normally, the axis of the servo is able to reach around 180 degrees, but in some servos it reaches 210 degrees (you can even ãnd motors of 360ï¿½, these servos

are ideal for installations where you need a wide angle rotation), but this range varies by application and manufacturer. The pulse duration indicates the rotation angle of the motor.

It's important to emphasize that, to make a servo remain in the same position, it is necessary to continuously send a pulse of constant width. This way, if there's a force that tries to

change this position, the motor will try to resist. If the servo motor stops sending pulses, or the interval between pulses is greater than the maximum allowed, then the servomotor

lose strength and stops trying to maintain its position, and any external force will be able to move it.

Servo control. A servomotor traditionally has three wires: power, ground, and signal. The power cable is usually red, and in this conãguration is connected to 5V. The ground wire is

usually black or brown and must be connected to....ground. The signal cable is usually white, yellow, or orange and needs to be connected to the PWM (Pulse Width Modulation)

signal. For generating a PWM waveform a microcontroller is often used, because it has speciãc hardware to perform this task and facilitates the process of generating the signal. It

can do this with just a few lines of code.

Terminal conãguration

https://backyardbrains.com/experiments/img/MotorTypes_web.jpg
https://backyardbrains.com/experiments/img/Graphs_PWM_web.jpg

In this experiment you will use only use power, ground, and digital out pin 2 of the SpikerShield to generate a PWM wave. Power will come from a USB battery (if you use the

Arduino's own power supply to power the motor, ampliãcation of your muscle activity becomes unstable due to the voltage draws of the servo), and ground will be shared between

the USB battery and the Arduino circuit.

Downloads
Take our (.ino) Claw Sketch and load it on your Arduino

Default Arduino Code for Muscle-Based Claw Control

(https://raw.githubusercontent.com/BackyardBrains/SpikerShield/master/Muscle/Arduino%20Code/Gripper/MuscleSpikerShieldWithGripper_V1_0.ino)

Test Code that loops Claw between Open and Closed

(https://raw.githubusercontent.com/BackyardBrains/SpikerShield/master/Muscle/Arduino%20Code/Gripper/MuscleSpikerShield_GripperLoop.ino)

Procedure
1. Your Robotic Claw has a three wire servomotor cable that you plug into your Muscle SpikerShield. The Cable has a black, red, and a yellow wire. The yellow is the control wire,

red is power (9V), and black is ground.
2. Plug the Servomotor cable into the three pin header on your Muscle SpikerShield. Order is important! The yellow side goes toward the center of the board.

https://backyardbrains.com/experiments/img/ServoMotorColor_web.jpg
https://raw.githubusercontent.com/BackyardBrains/SpikerShield/master/Muscle/Arduino%20Code/Gripper/MuscleSpikerShieldWithGripper_V1_0.ino
https://raw.githubusercontent.com/BackyardBrains/SpikerShield/master/Muscle/Arduino%20Code/Gripper/MuscleSpikerShield_GripperLoop.ino

3. Your Claw is power hungry and needs its own power supply. Plug the two 9V batteries into the barrel connectors on the Muscle SpikerShield Board and the Arduino.
4. Place three sticker electrodes on your own, two on your forearm and one on the back of your palm.
5. Taking your orange electrode cable, connect the two red alligator clips on the electrodes on your forearm (order does not matter) and the black alligator clip on the ground on

the back of your hand. Plug the orange cable into the orange port on your Muscle SpikerShield.
6. Plug the additional battery into the barrel connector on the blue Arduino board to power up the system.
7. Now äex your arm! You should see the Claw move as well. You can push the white button to change between high and low threshold modes, and you can push the red button to

switch between default open or default closing.

Code description: This code makes the Arduino, with help of the Muscle SpikerShield, capture EMG signals produced by contracting muscles of the forearm and converts them to
PWM pulses to give movement to the servo motor. These pulses change according to the movement of the muscles: the more strength you use to close your hand, the more the
Claw closes. Using the library included in this program you can control servo motors easily without much code. Below you can see the code, but if you want to download it, just
click here (https://raw.githubusercontent.com/BackyardBrains/SpikerShield/master/Muscle/Arduino%20Code/Gripper/MuscleSpikerShieldWithGripper_V1_0.ino) or in the links
above.

The Code

https://backyardbrains.com/experiments/img/claw_muscleSpikerShield2.jpg
https://backyardbrains.com/experiments/img/claw_muscleSpikerShield_jumpwire.jpg
https://raw.githubusercontent.com/BackyardBrains/SpikerShield/master/Muscle/Arduino%20Code/Gripper/MuscleSpikerShieldWithGripper_V1_0.ino

/*
* --
* Code monitors amplitude of EMG envelope, displays EMG strength on LED bar and controls
* robotic gripper by controlling servo motor.
* --
*/

#include <Servo.h>
#define GRIPPER_STATE_BUTTON_PIN 4 //pin for button that switches defult state

//of the gripper (opened/closed)
#define SERVO_PIN 2 //pin for servo motor
#define SENSITIVITY_BUTTON_PIN 7 //pin for button that selects sesitivity
#define NUM_LED 6 //number of LEDs in LED bar
#define GRIPPER_MINIMUM_STEP 5 //5 degree dead zone (used to avoid

//aiming oscilation)
#define OPEN_MODE 1 //default gripper state is opened
#define CLOSED_MODE 2 //default gripper state is closed
#define MINIMUM_SERVO_UPDATE_TIME 100 //update servo position every 100ms

Servo Gripper; //servo for gripper
byte ledPins[] = {8, 9, 10, 11, 12, 13}; //pins for LEDs in LED bar

//EMG saturation values (when EMG reaches this value
//the gripper will be fully opened/closed)
int sensitivities[] = {200, 350, 520, 680, 840, 1000};
int lastSensitivitiesIndex = 2; //set initial sensitivity index

int emgSaturationValue = 0; //selected sensitivity/EMG saturation value
int analogReadings; //measured value for EMG
byte ledbarHeight = 0; //temporary variable for led bar height

unsigned long oldTime = 0; //timestamp of last servo angle update (ms)
int oldDegrees = 0; //old value of angle for servo
int newDegree; //new value of angle for servo

unsigned long debouncerTimer = 0; //timer for button debouncer
int gripperStateButtonValue = 0; //variable that stores state of button
int userReleasedButton = 1; //flag that is used to avoid multiple

//button events when user holds button

int currentFunctionality = OPEN_MODE; //current default position of claw

//---
// Setup servo, inputs and outputs
// --
void setup(){

//init servo
Gripper.attach(SERVO_PIN);

//init button pins to input
pinMode(GRIPPER_STATE_BUTTON_PIN, INPUT);
pinMode(SENSITIVITY_BUTTON_PIN, INPUT);

//initialize all LED pins to output
for(int i = 0; i < NUM_LED; i++){

pinMode(ledPins[i], OUTPUT);
}

//get current sensitivity
emgSaturationValue = sensitivities[lastSensitivitiesIndex];

}

//---
// Main loop

//
// - Checks state of sesitivity button
// - Checks state of default-gripper-state button
// - Measure EMG
// - Shows EMG strength on LED bar
// - Sets angle of servo based on EMG strength and current mode (open/closed)
// --
void loop()
{

//----------------------- Switch sensitivity ------------------------------------

//check if button is pressed (HIGH)
if (digitalRead(SENSITIVITY_BUTTON_PIN))
{

//turn off all the LEDs in LED bar
for(int j = 0; j < NUM_LED; j++)
{

digitalWrite(ledPins[j], LOW);
}

//increment sensitivity index
lastSensitivitiesIndex++;
if(lastSensitivitiesIndex==NUM_LED)
{

lastSensitivitiesIndex = 0;
}

//get current sensitivity value
emgSaturationValue = sensitivities[lastSensitivitiesIndex];

//light up LED at lastSensitivitiesIndex position for visual feedback
digitalWrite(ledPins[lastSensitivitiesIndex], HIGH);

//wait user to release button
while (digitalRead(SENSITIVITY_BUTTON_PIN))
{

delay(10);
}
//whait a bit more so that LED light feedback is always visible
delay(100);

}

//---------------------------- Switch gripper default position open/close ---------

//check if enough time has passed for button contact to settle down
if((millis() - debouncerTimer) > 50)
{

gripperStateButtonValue = digitalRead(GRIPPER_STATE_BUTTON_PIN);
//if button is pressed
if(gripperStateButtonValue == HIGH)
{

//if last time we checked button was not pressed
if(userReleasedButton)
{

debouncerTimer = millis();
//block button events untill user releases it
userReleasedButton = 0;

//toggle operation mode
if(currentFunctionality == OPEN_MODE)
{

currentFunctionality = CLOSED_MODE;
}
else
{

currentFunctionality = OPEN_MODE;

}
}

 }
 else
 {

userReleasedButton = 1;
 }

}

//----------------------------- Measure EMG ---------------------------------------

analogReadings = analogRead(A0);//read EMG value from analog input A0

//---------------------- Show EMG strength on LED ----------------------------------

//turn OFF all LEDs on LED bar
for(int j = 0; j < NUM_LED; j++)
{

digitalWrite(ledPins[j], LOW);
}

//calculate what LEDs should be turned ON on the LED bar
analogReadings= constrain(analogReadings, 30, emgSaturationValue);
ledbarHeight = map(analogReadings, 30, emgSaturationValue, 0, NUM_LED);

//turn ON LEDs on the LED bar
for(int k = 0; k < ledbarHeight; k++)
{

digitalWrite(ledPins[k], HIGH);
}

//-------------------- Drive Claw according to EMG strength -----------------------

//set new angle if enough time passed
if (millis() - oldTime > MINIMUM_SERVO_UPDATE_TIME)
{

//calculate new angle for servo
if(currentFunctionality == OPEN_MODE)
{

analogReadings = constrain(analogReadings, 40, emgSaturationValue);
newDegree = map(analogReadings, 40 ,emgSaturationValue, 190, 105);

}
else
{

analogReadings = constrain(analogReadings, 120, emgSaturationValue);
newDegree = map(analogReadings, 120 ,emgSaturationValue, 105, 190);

}

//check if we are in servo dead zone
if(abs(newDegree-oldDegrees) > GRIPPER_MINIMUM_STEP)
{

 //set new servo angle
 Gripper.write(newDegree);

}
oldTime = millis();
oldDegrees = newDegree;

}
}

With this new experience, now you can make your own inventions. Tell us what you are making info@backyardbrains.com (mailto:info@backyardbrains.com) and maybe we can
start a friendship!

mailto:info@backyardbrains.com

Science Fair Project Ideas
Try to design some reaction time experiments that could be done with your own body and with the Claw. How does the time differ? Does it depend on the sensory stimulus
you're reacting to?

Hook up people of differing levels of athleticism-does this affect the strength of the Claw? How about how long they can the grip?

What are some other devices you could connect this to? What might be the limit to what or how many you could connect to?

Twitter

Learn how we came up with the idea for the Interspecies Plant-Plant-Communicator! #Plants #VenusFlytrap #Mimosa… https://t.co/GZoRZr3oO4
(https://t.co/GZoRZr3oO4)

Go Backstage and see how we brought our recent TED talk to life! #plants #VenusFlytrap https://t.co/J0xmhDhC4b (https://t.co/J0xmhDhC4b) https://t.co/qGmpgc3KO8

@riazalihunzai Hey! The kit we used in that talk is the Human-Human-Interface, which uses a Muscle SpikerShield to… https://t.co/B3wTYwgsES
(https://t.co/B3wTYwgsES)

Recent Posts

Why are Neuroscientists Interested in... plants? (http://blog.backyardbrains.com/?p=3372)

Prototyping our Low-Cost, Songbird Identiãer (http://blog.backyardbrains.com/?p=3273)

Tim Marzullo Talks Human-Human-Interface, BYB History on "Neural Implants" Podcast (http://blog.backyardbrains.com/?p=3280)

BYB Information

Spike Counter (/About/SpikeCounter)

Contact (/About/Contact)

FAQ (/About/FAQ)

Our Finances (/About/Finance)

Press (/About/Press)

Copyright © 2009-2016 cBackyard Brains (http://backyardbrains.com) | Protected under the Creative Common License c (http://creativecommons.org/licenses/) b a

(http://creativecommons.org/licenses/by-sa/3.0/)

https://t.co/GZoRZr3oO4
https://t.co/J0xmhDhC4b
https://t.co/B3wTYwgsES
http://blog.backyardbrains.com/?p=3372
http://blog.backyardbrains.com/?p=3273
http://blog.backyardbrains.com/?p=3280
https://backyardbrains.com/About/SpikeCounter
https://backyardbrains.com/About/Contact
https://backyardbrains.com/About/FAQ
https://backyardbrains.com/About/Finance
https://backyardbrains.com/About/Press
http://backyardbrains.com/
http://creativecommons.org/licenses/
http://creativecommons.org/licenses/by-sa/3.0/

